Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493515

RESUMO

In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of ß-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into ß-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.


Assuntos
Eritrócitos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Peróxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipídeos , Estresse Oxidativo
2.
Materials (Basel) ; 14(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067920

RESUMO

Polymer-clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R'NR]+, where R = C12, C14, C16, and R' = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers' exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119491, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549855

RESUMO

The main aim of the present work was to investigate the effect of organo-montmorillonite nanofiller on the cross-linking process of polysiloxane. Two series of model polysiloxane nanocomposites were prepared by incorporating organoclay at different amounts such as 0, 1, 2, 4, and 8 wt% in relation to the weight of the polymer matrix. Poly(methylhydrosiloxane) (PMHS) was cross-linked with two linear vinylsiloxanes of different chain lengths between functional end-groups through hydrosilylation. This reaction was carried out in the presence of Karstedt's catalyst at equimolar ratios of reactive groups. Fourier-transform infrared (FTIR) spectroscopic measurements obtained during the cross-linking processes as well as for the reaction products revealed that the rate of hydrosilylation and its efficiency are influenced by the type of the cross-linking agent used and the amount of organo-montmorillonite introduced into the polysiloxane network. Quantitative analysis of the recorded FTIR spectra showed that as the amount of nanofiller in the polysiloxane matrix increased, the rate and efficiency of the cross-linking process decreased. Swelling measurements confirmed that the increase in the amount of unreacted Si-H groups in the system resulted in a lower cross-link density of the studied materials. Furthermore, X-ray diffraction and transmission electron microscopy were performed to determine the nature of dispersion of organoclay within the studied systems.

4.
Materials (Basel) ; 10(11)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-29156598

RESUMO

A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at -196 °C, and H2 TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...